首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10563篇
  免费   945篇
  国内免费   1401篇
  2023年   153篇
  2022年   204篇
  2021年   256篇
  2020年   283篇
  2019年   341篇
  2018年   308篇
  2017年   309篇
  2016年   396篇
  2015年   353篇
  2014年   495篇
  2013年   689篇
  2012年   450篇
  2011年   494篇
  2010年   379篇
  2009年   580篇
  2008年   613篇
  2007年   614篇
  2006年   620篇
  2005年   513篇
  2004年   475篇
  2003年   448篇
  2002年   379篇
  2001年   350篇
  2000年   270篇
  1999年   321篇
  1998年   245篇
  1997年   207篇
  1996年   192篇
  1995年   192篇
  1994年   199篇
  1993年   204篇
  1992年   187篇
  1991年   165篇
  1990年   138篇
  1989年   104篇
  1988年   103篇
  1987年   92篇
  1986年   82篇
  1985年   92篇
  1984年   82篇
  1983年   55篇
  1982年   66篇
  1981年   56篇
  1980年   39篇
  1979年   32篇
  1978年   19篇
  1977年   16篇
  1976年   25篇
  1974年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   
992.
An equation for the rate of photosynthesis as a function of irradiance introduced by T. T. Bannister included an empirical parameter b to account for observed variations in curvature between the initial slope and the maximum rate of photosynthesis. Yet researchers have generally favored equations with fixed curvature, possibly because b was viewed as having no physiological meaning. We developed an analytic photosynthesis‐irradiance equation relating variations in curvature to changes in the degree of connectivity between photosystems, and also considered a recently published alternative, based on changes in the size of the plastoquinone pool. When fitted to a set of 185 observed photosynthesis‐irradiance curves, it was found that the Bannister equation provided the best fit more frequently compared to either of the analytic equations. While Bannister's curvature parameter engendered negligible improvement in the statistical fit to the study data, we argued that the parameter is nevertheless quite useful because it allows for consistent estimates of initial slope and saturation irradiance for observations exhibiting a range of curvatures, which would otherwise have to be fitted to different fixed‐curvature equations. Using theoretical models, we also found that intra‐ and intercellular self‐shading can result in biased estimates of both curvature and the saturation irradiance parameter. We concluded that Bannister's is the best currently available equation accounting for variations in curvature precisely because it does not assign inappropriate physiological meaning to its curvature parameter, and we proposed that b should be thought of as the expression of the integration of all factors impacting curvature.  相似文献   
993.
994.
995.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   
996.
To study the mechanisms of drought inhibiting photosynthesis and the role of PAs and ethylene, the photosynthetic rate (Pn), the maximal photochemical efficiency of PSII (Fv/Fm), the intercellular CO2 concentration (Ci), photorespiratory rate (Pr), the amount of chlorophyll (chl), antioxidant enzyme activity, ethylene levels, RuBPC (ribulose-1,5-bisphosphate carboxylase) activity and endogenous polyamine levels of pakchoi were examined, and an inhibitor of S-adenosylmethionine decarboxylase (SAMDC) and an inhibitor of ethylene synthesis and spermidine (Spd) were used to induce the change of endogenous polyamine levels. The results show that drought induced a decrease in Pn and RuBPC activity, an increase in the intercellular CO2 concentration (Ci), but no change in the actual photochemical efficiency of PSII (ΦPSII), and chlorophyll content. In addition, drought caused an increase in the free putrescine (fPut), the ethylene levels, a decrease in the Spd and spermine (Spm) levels, and the PAs/fPut ratio in the leaves. The exogenous application of Spd and amino oxiacetic acid (AOAA, an inhibitor of ethylene synthesis) markedly reversed these drought-induced effects on polyamine, ethylene, Pn, the PAs/fPut ratio and RuBPCase activity in leaves. Methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SAMDC resulting in the inability of activated cells to synthesize Spd and Spm, exacerbates the negative effects induced by drought. These results suggest that the decrease in Pn is at least partially attributed to the decrease of RuBPC activity under drought stress and that drought inhibits RuBPC activity by decreasing the ratio of PAs/fPut and increasing the release of ethylene.  相似文献   
997.
The cyanobacterial phycobilisome (PBS) is a giant pigment-protein complex which harvests light energy for photosynthesis and comprises two structures: a core and peripheral rods. Most studies on PBS structure and function are based on mutants of unicellular strains. In this report, we describe the phenotypic and genetic characterization of a transposon mutant of the filamentous Anabaena sp. strain PCC 7120, denoted LC1, which cannot synthesize the phycobiliprotein phycocyanin (PC), the main component of the rods; in this mutant, the transposon had inserted into the cpcB gene (orf alr0528) which putatively encodes PC-β chain. Mutant LC1 was able to synthesize phycoerythrocyanin (PEC), a phycobiliprotein (PBP) located at the terminal region of the rods; but in the absence of PC, PEC did not attach to the PBSs that only retained the allophycocyanin (APC) core; ferredoxin: NADP+-oxidoreductase (FNR) that is associated with the PBS in the wild type, was not found in isolated PBSs from LC1. The performance of the mutant exposed to different environmental conditions was evaluated. The mutant phenotype was successfully complemented by cloning and transfer of the wild type complete cpc operon to mutant LC1. Interestingly, LC1 compensated its mutation by significantly increasing the number of its core-PBS and the effective quantum yield of photosystem II (PSII) photochemistry; this feature suggests a more efficient energy conversion in the mutant which may be useful for biotechnological applications.  相似文献   
998.
陈梨  郑荣波  郭雪莲  侯亚文 《生态学报》2020,40(7):2321-2332
氨氧化由氨氧化细菌(AOB)和氨氧化古菌(AOA)共同执行,是土壤硝化过程的第一步和限速步骤。放牧过程中,动物啃食、排泄和践踏等行为将影响土壤氨氧化微生物群落,但目前关于不同类型放牧对湿地氨氧化微生物群落结构及其多样性的影响尚不清楚。利用Illumina Mise高通量测序技术,对比研究牦牛放牧和藏香猪放养两种放牧类型对泥炭沼泽土壤氨氧化微生物群落结构及其多样性的影响。结果表明,牦牛放牧显著增加土壤容重,显著降低土壤pH、TN、TOC、NH~+_4-N和NO~-_3-N含量;藏香猪放养显著增加土壤NO~-_3-N含量和硝化潜势(PNR)。牦牛放牧显著降低土壤AOA的丰富度和AOB的α多样性,藏香猪放养降低土壤AOA的α多样性和AOB的丰富度。放牧显著降低泉古菌门(Crenarchaeota)的相对丰度。AOA的α多样性与土壤NO~-_3-N含量和PNR呈显著负相关。AOB的α多样性与pH、TOC、TN和NH~+_4-N含量呈显著正相关。放牧影响下土壤pH、TN和NO~-_3-N含量的变化是影响AOA群落结构的主要因素。藏香猪放养对AOA和AOB群落的影响更显著,由放牧引起的土壤环境条件的变化是导致氨氧化微生物群落发生改变的重要因素。  相似文献   
999.
通过2017和2018两年的田间试验研究了小麦秸秆还田和施肥对土壤肥力、酶活性以及鲜食甘薯产量和品质的影响。试验设5个处理:秸秆不还田+常规施肥(CK)、小麦秸秆半量还田+常规施肥(50%S)、小麦秸秆全量还田+不施肥(100%S-F)、小麦秸秆全量还田+常规施肥(100%S)、小麦秸秆全量还田+常规施肥+150 kg·hm-2氮肥(100%S+N)。结果表明:秸秆还田施肥处理显著提高了土壤中的有效磷、碱解氮、总氮和有机质含量,显著提高了土壤过氧化氢酶、碱性磷酸酶、脲酶和蔗糖酶活性。秸秆还田施肥处理均显著提高了薯块产量、单薯鲜重和商品薯率,其中50%S处理下薯块产量最低。2年的秸秆还田处理下,薯块产量和商品薯率均在100%S处理下最高。2年的秸秆还田施肥处理总体上提高了甘薯的淀粉和蛋白质含量,但100%S和100%S+N处理均降低了甘薯还原糖和可溶性糖含量。可见,小麦秸秆全量还田的效果优于半量还田,与常规施肥配合下薯块产量和商品薯率最高,但影响食用口感,实际生产中可适当减少氮肥用量。  相似文献   
1000.
构建生物量预估模型,探究生物量在各器官中的分配策略和异速生长关系及其对环境因子的响应,对理解植物群落结构、功能、碳储存和分配机制具有重要意义。本研究以内蒙古荒漠草原常见种茵陈蒿(Artemisia capillaris Thunb.)为对象,在不同水分处理下,利用易测指标,如株高、基径、分枝数、冠幅和生物量等参数建立生物量模型,采用标准化主轴分析法分析其异速生长关系。结果表明:在不同水分处理下,茵陈蒿的最佳生物量预估模型的变量选择不同;不同水分处理下茵陈蒿各器官间、各器官与地上生物量间的异速生长关系不同,但相对于自然降水量,增水和减水50%下均为等速生长,这说明在不同水分条件下茵陈蒿对各器官间的资源配置存在权衡策略,符合最优分配假说;而在极端气候条件下,各器官对资源的竞争会变弱;在荒漠草原中,对草本植物进行生物量模拟,选择预测变量和方程模型时,应考虑生长季降水量。本研究可为荒漠草原草本植物生物量预估模型的建立和异速生长关系对环境因子适应的理解等提供方法支持及理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号